Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity
نویسندگان
چکیده
INTRODUCTION Simultaneously acquiring functional Near Infrared Spectroscopy (fNIRS) during Transcranial Magnetic Stimulation (rTMS) offers the possibility of directly investigating superficial cortical brain activation and connectivity. In addition, the effects of rTMS in distinct brain regions without quantifiable behavioral changes can be objectively measured. METHODS Healthy, nonmedicated participants age 18-50 years were recruited from the local community. After written informed consent was obtained, the participants were screened to ensure that they met inclusion criteria. They underwent two visits of simultaneous rTMS/fNIRS separated by 2 to 3 days. In each visit, the motor cortex and subsequently the prefrontal cortex (5 cm anterior to the motor cortex) were stimulated (1 Hz, max 120% MT, 10 s on with 80 s off, for 15 trains) while simultaneous fNIRS data were acquired from the ipsilateral and contralateral brain regions. RESULTS Twelve healthy volunteers were enrolled with one excluded prior to stimulation. The 11 participants studied (9 male) had a mean age of 31.8 (s.d. 10.2, range 20-49) years. There was no significant difference in fNIRS between Visit 1 and Visit 2. Stimulation of both the motor and prefrontal cortices resulted in a significant decrease in oxygenated hemoglobin (HbO(2)) concentration in both the ipsilateral and contralateral cortices. The ipsilateral and contralateral changes showed high temporal consistency. DISCUSSION Simultaneous rTMS/fNIRS provides a reliable measure of regional cortical brain activation and connectivity that could be very useful in studying brain disorders as well as cortical changes induced by rTMS.
منابع مشابه
The Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain
Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...
متن کاملPrediction of the response to repetitive transcranial magnetic stimulation by spectral powers of prefrontal regions of brain.
Introduction: Quantitative assessments of the effects induced by repetitive transcranial magnetic stimulation (rTMS) are crucial to develop more efficient and personalized treatments. Objectives: To determine the spectral powers of different subbands of EEG correlated with treatment response to rTMS. Materials and Methods: the spectral powers of different...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملFunctional Near-Infrared Spectroscopy to Probe State- and Trait-Like Conditions in Chronic Tinnitus: A Proof-of-Principle Study
OBJECTIVE Several neuroscience tools showed the involvement of auditory cortex in chronic tinnitus. In this proof-of-principle study we probed the capability of functional near-infrared spectroscopy (fNIRS) for the measurement of brain oxygenation in auditory cortex in dependence from chronic tinnitus and from intervention with transcranial magnetic stimulation. METHODS Twenty-three patients ...
متن کاملConcurrent application of TMS and near-infrared optical imaging: methodological considerations and potential artifacts
The simultaneous application of transcranial magnetic stimulation (TMS) with non-invasive neuroimaging provides a powerful method for investigating functional connectivity in the human brain and the causal relationships between areas in distributed brain networks. TMS has been combined with numerous neuroimaging techniques including, electroencephalography (EEG), functional magnetic resonance i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 47 4 شماره
صفحات -
تاریخ انتشار 2009